107 research outputs found

    Diseño de un Entorno de Desarrollo Integrado para una Unidad Controladora de Procesos

    Get PDF
    Proyecto de Graduación (Licenciatura en Ingeniería Electrónica). Instituto Tecnológico de Costa Rica. Escuela de Ingeniería Electrónica, 2010.El proyecto TeleLAB, es una iniciativa de parte de la Escuela de Ingeniería Electrónica, cuyo propósito es la creación de un laboratorio en línea enfocado a temas relacionados al área del Control Automático. Este laboratorio en línea, brindará a los estudiantes la posibilidad de realizar distintos experimentos de manera remota, ya sea, por medio de un sistema de red de área local (LAN) o Internet. Para lograr el propósito del proyecto TeleLAB, se requiere la adquisición del equipo adecuado, el cual debe cumplir con las siguientes características: Conectividad a través de una interfaz Ethernet; Dispositivos de entrada/salida; Conjunto de funciones programables para el desarrollo de sistemas de control. Actualmente la Escuela ha desarrollado un dispositivo electrónico que cumple con los requisitos mencionados para formar parte del laboratorio en línea. Éste fue diseñado como parte de un proyecto de graduación anterior llamado: “Unidad Controladora de Procesos para el diseño, análisis, simulación e implementación de sistemas de Control Automático a través de redes TCP/IP” [2]. Este dispositivo electrónico no cuenta con un sistema de interacción adecuado con el usuario, de tal manera que éste pueda realizar los experimentos que desee en poco tiempo y con un mínimo de errores. El presente proyecto, trata del diseño y desarrollo de un nuevo sistema de interacción con el usuario denominado Entorno de Desarrollo Integrado para una Unidad Controladora de Procesos. El proceso de diseño consistió de cinco etapas: la creación de un lenguaje intermedio, el desarrollo de un traductor de código intermedio, el diseño de una interfaz gráfica, la creación de un traductor de lenguaje gráfico a código intermedio y finalmente la implementación de la herramienta de simulación. El nuevo sistema de interacción humano-máquina se diseñó con el fin de disminuir el tiempo de desarrollo de las aplicaciones, minimizar errores y simplificar la implementación y diseño de nuevos sistemas de Control Automático

    Distortion and instability compensation with deep learning for rotational scanning endoscopic optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction between the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally invasive treatment. In this paper, we propose a new online correction method to tackle both B-scan distortion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The proposed computational approach for OCT scanning video correction integrates a Convolutional Neural Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumulative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo and in vivo data, where strong scanning artifacts are successfully corrected. (c) 2022 The Authors. Published by Elsevier B.V

    Guidage d’un endoscope interventionnel robotisé à l’aide de la tomographie par cohérence optique

    No full text
    There exists an unmet clinical need to provide doctors with a new method that streamlines minimally invasive endoscopic treatment of colorectal cancer to single operator procedures assisted by in-situ and real-time accurate tissue characterization for informed treatment decisions. A promising solution to this problem has been developed at the ICube laboratory, in which the flexible interventional endoscope (Karl Storz) was completely robotized, so allowing a single operator to independently telemanipulate the endoscope and two insertable therapeutic instruments with a joint control unit. However, the robot-assisted flexible endoscope is subject to the same diagnostic accuracy limitations as standard endoscopy systems. It has been demonstrated that endoscopic optical coherence tomography (OCT) has a good potential for imaging disorders in the gastrointestinal tract and differentiating healthy tissue from diseased. Neither OCT, nor the robotized endoscope can solve the limitations of current standard of care for colon cancer management alone. Combining these two technologies and developing a new platform for early detection and treatment of cancer is the main interest of this work, with the aim of developing a state-of-the-art OCT imaging console and probe integrated with the robotized endoscope. The capabilities of this new technology for imaging of the interior of the large intestine were tested in pre-clinical experiments showing potential for improvement in margin verification during minimally invasive endoscopic treatment in the telemanipulation mode.Il manque actuellement aux médecins une nouvelle méthode qui rationalise le traitement peu invasif pour en faire des procédures à opérateur unique, assistées par une caractérisation précise des tissus in situ et en temps réel, en situation de prise de décisions dans la gestion du cancer colorectal. Une solution prometteuse à ce problème a été développée par l'équipe AVR (Automatique, Vision et Robotique) du laboratoire ICube, au sein de laquelle l'endoscope interventionnel flexible (fabriqué par Karl Storz) a été entièrement robotisé, permettant ainsi à un seul opérateur de télémanipuler indépendamment l'endoscope et deux instruments thérapeutiques insérables, grâce à unité de contrôle commune. Cependant, l'endoscope flexible assisté par robot est soumis aux mêmes limites de précision diagnostique que les systèmes d'endoscopie standards. Il a été démontré que l'OCT endoscopique présente un potentiel pour l'imagerie des troubles de la voie gastro-intestinale et pour la différenciation de tissus sains des tissus malades. Actuellement, l'OCT se limite à l'imagerie de l'œsophage humain, qui présente une géométrie simple et un accès facile. Ni l'OCT, ni l'endoscope robotisé ne peuvent résoudre à eux seuls les limites de la norme actuelle de soins pour la prise en charge d’un cancer du côlon. La combinaison de ces deux technologies et le développement d'une nouvelle plate-forme pour la détection et le traitement précoce du cancer constituent l'objet principal de cette thèse, avec la vision de développer une console d'imagerie OCT et une sonde de haute technologie intégrée à l'endoscope robotisé. Ce système permet d'obtenir des images de l'intérieur du gros intestin pour la caractérisation des tissus et l'assistance au traitement, permettant ainsi à un seul opérateur d'effectuer une intervention peu invasive en mode télémanipulation

    Modeling and controlling a robotized medical instrument

    Get PDF
    Proyecto de Graduación (Maestría en Ingeniería en Electrónica) Instituto Tecnológico de Costa Rica, Escuela de Electrónica, 2016.During the last decade, Minimally Invasive Surgeries (MIS) have become a trend in the medical field, given the numerous benefits such as: reduced trauma, shorter recovery time and minimal postoperative complications. It has been promoted by the development of new technologies mainly in the field of robotics. Robotic technologies has emerged as a great option to create solutions that enhance the surgeon's perception and dexterity and allows access to often inaccessible human body places by keeping the smallest incision as possible. This document describes the modeling and control of a hand-held robotized medical instrument using stereo vision feedback, with the purpose of providing automatic assistance to the surgeon during the surgical procedure. The system modeling, simulation, experimental evaluation and results will be presented in this thesis document

    Augmented Reality Visualization Based On 3D Ultrasonography

    No full text
    International audienceThis paper presents an ultrasonography-based augmented reality guidance system. We achieved high accuracy of each calibration step and successfully made a visual guided robotic needle insertion experiment

    Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography

    No full text
    International audienceOptical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscop

    Intraoperative Ultrasonography-based Augmented Reality For Application In Image Guided Robotic Surgery

    No full text
    International audiencePurpose Accurate Tumor delineation during the surgery is a big challenge for surgeons. For instance, in transoral robotic surgery (TORS) for tongue base tumor resection, the preoperative images cannot accurately reflect the tumor area in the tongue, because of the soft tissue deformation during the surgery. Furthermore, due to the camera’s small field of view and the loss of cross-modality landmarks in the tongue base, it is difficult to register the preoperative image to the intraoperative stereo camera with deformable registration. We propose an intraoperative ultrasonography (IOUS)-based augmented reality (AR) framework which is able to accurately delimit the tumor boundaries and provide them to the surgeon’s view. Instead of some works requiring manual registration [1], additional fiducial markers [2], or intraoperative imaging modalities using ionizing radiation [2, 3], our solution uses safe and cheap US imaging and does not need additional fiducial markers disturbing the TORS workflow

    Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation - A first step to create reliable customized simulators.

    No full text
    Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training.Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling.All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6-3.5 times higher than in bone. For polycarbonate, forces applied were 1.6-2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor.Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety

    Steerable OCT catheter for real-time assistance during teleoperated endoscopic treatment of colorectal cancer

    No full text
    International audienceWhen detected early, colorectal cancer can be treated with minimally invasive flexible endoscopy. However, since only specialized experts can delineate margins and perform endoscopic resections of lesions, patients still often undergo colon resections. To better assist in the performance of surgical tasks, a robotized flexible interventional endoscope was previously developed, having two additional side channels for surgical instrument. We propose to enhance the imaging capabilities of this device by combining it with optical coherence tomography (OCT). For this purpose, we have developed a new steerable OCT instrument with an outer diameter of 3.5 mm. The steerable instrument is terminated with a 2 cm long transparent sheath to allow three-dimensional OCT imaging using a side-focusing optical probe with two external scanning actuators. The instrument is connected to an OCT imaging system built around the OCT Axsun engine, with a 1310 nm center wavelength swept source laser and 100 kHz A-line rate. Once inserted in one of the side channels of the robotized endoscope, bending, rotation and translation of the steerable OCT instrument can be controlled by a physician using a joystick. Ex vivo and in vivo tests show that the novel, steerable and teleoperated OCT device enhances dexterity, allowing for inspection of the surgical field without the need for changing the position of the main endoscope
    corecore